Multivariate visualization

C. Andrews

2016-03-25

Univariate

Univariate: Histogram

Univariate: Stem and Leaf

Stem	Leaf
4	12
5	7
6	34458
7	1222566666778999
8	0111122339
9	1235555678899
10	00

Adding a variable...

Univariate questions

Which is the biggest?

Which is the smallest?

What is the "center"?

What is the "shape" of the data?

What are the outliers?

Multivariate questions

Which items are most alike?

Which items are most exceptional?

How can these items be combined into logical groups based on similarity?

Bivariate

Trivariate

d

Hypervariate

d

MultiD Scatterplots

or just add another axis

Scatterplot matrix

http://ericksondata.com/wp/2012/150-varieties-of-hops/

Scatterplot matrix

http://www.statsoft.com/support/blog/entryid/212/finding-the-right-pieces-to-the-puzzle

http://junkcharts.typepad.com/junk_charts/2010/06/the-scatterplot-matrix-a-great-tool.html

Trellis plot

Trellis plot

Trellis graph - not just scatterplots

Small multiples

Small multiples

Tufte. The Visual Display of Quantitative Information

Chaiyya Chaiyya Dance Moves

1	Å	X	7	ł	ĥ	1
2	Å	ŕ	ŕ	Å	እ	ን
3	Å	ť	Ŷ	ŕ	ች	∱
4	Å	Å	ġ	þ	Ŕ	∱
5	Å	ħ	ş	∱	Ŗ	ĥ

Small multiples

Embedded visualization

Multidimensional scaling

Calculate the similarity of all pairs of records using some distance function

Create a map that maps each record into our 2 (or 3) dimensional space

Calculate the similarity of all pairs of points

Compute the stress on the system as function of the difference between the similarity of the points and the similarity of the original records

If the stress is above some threshold, move points to reduce stress and repeat

Multidimensional scaling

Х