Multivariate visualization

C. Andrews

Univariate

Univariate: Histogram

Univariate: Stem and Leaf

Stem

Leaf

$$
\begin{array}{r|l}
4 & 12 \\
5 & 7 \\
6 & 34458 \\
7 & 1222566666778999 \\
8 & 0111122339 \\
9 & 1235555678899 \\
10 & 00
\end{array}
$$

Univariate: Box and Whiskers

Adding a variable...

Univariate questions

Which is the biggest?

Which is the smallest?

What is the "center"?

What is the "shape" of the data?
What are the outliers?

Multivariate questions

Which items are most alike?

Which items are most exceptional?
How can these items be combined into logical groups based on similarity?

Bivariate

Trivariate

Hypervariate

MultiD Scatterplots

or just add another axis

Scatterplot matrix

$\begin{array}{ll} & 15 \\ \frac{8}{2} & 10 \\ \frac{8}{2} & \\ \text { 卷 } & 5 \end{array}$									
\％ 10 \％ 骨 5 0									
									$\int_{+*}^{+*}+{ }^{+}+$
年									
			$\stackrel{+t_{i}}{+\underbrace{+}_{i}}$ ${ }^{\text {Chy }}$ edthet						
0.2 \＆ en 0.1 0 0.0					${ }_{+}^{+\infty+t^{+\infty}}$				
						$\therefore+{ }_{+}^{2+5}$			\underbrace{t}_{*}
	$\begin{array}{lccc} 0 & 5 & 10 \\ \\ \text { Alpha Acid } \end{array}$	$\begin{array}{lcc} 0 & 5 \\ \text { Beta Acids } \end{array}{ }^{10}$	$\begin{array}{llll} 0 & 20 & 40 & 60 \\ \text { Cohumulone Acids } \end{array}$	$0 \begin{array}{cccc} 0 & 1 & 2 & 3 \\ 0 i l \\ \hline \end{array}$	$\begin{array}{rcr} 0.0 & 0.20 \\ \text { Oil Humulene } \end{array}$	$\begin{array}{lc} 0.0 & 0.1 \\ & \text { Oill Myrcene } \end{array}$		Oill Caryophyllene	$0.000 \quad 0.005 \quad 0$. Oill Farnesene

Scatterplot matrix

Matrix Plot
Sources: CDC (2009), Census Bureau (2000)

OBESE (bmi 30.0 - 99.8)			
	\% in Poverty		
		\% of all $\mathrm{HH}=$ Single Parent	
	${ }^{\circ} 0^{\circ}{ }^{\circ}{ }^{\circ}$ क $80 \%{ }^{\circ}$ 8		

http://www.statsoft.com/support/blog/entryid/212/finding-the-right-pieces-to-the-puzzle

http://junkcharts.typepad.com/junk_charts/2010/06/the-scatterplot-matrix-a-great-tool.html

Trellis plot

Trellis plot

Trellis graph - not just scatterplots

Small multiples

Small multiples

Tufte．The Visual Display of Quantitative Information

Chaiyya Chaiyya Dance Moves

1 か 8 \＆$\%$＊
2 介 кк人入入

3

4 in if o \＆

5
－会务和

Small multiples

Embedded visualization

Multidimensional scaling

Calculate the similarity of all pairs of records using some distance function

Create a map that maps each record into our 2 (or 3) dimensional space

Calculate the similarity of all pairs of points
Compute the stress on the system as function of the difference between the similarity of the points and the similarity of the original records

If the stress is above some threshold, move points to reduce stress and repeat

Multidimensional scaling

MDS of Census Data

